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Kolmogorov’s second hypothesis has been examined for the case of turbulence 
generated behind a very large grid. The turbulent Reynolds number R, = 280 
was sufficient to obtain a short inertial subrange. The one-dimensional subrange 
constant a, = 0.48 +_ 0.06 is in agreement with recent determinations made in 
geophysical flows. Isotropy was tested by comparing the transverse velocity 
spectrum with the transverse spectrum predicted from the longitudinal spec- 
trum using the isotropic relations. The comparison showed the flow to be isotropic 
everywhere except a t  the largest scales. 

It was observed that a t  high wavenumbers the spectra were attenuated by 
effects of finite wire length. The wire-length corrections suggested by Wyngaard 
(1968) were found to be inadequate. New corrections based on experimentally 
determined universal spectra are proposed. 

1. Introduction 
Over the past 20 years a significant fraction of turbulence research has been 

devoted to the study and application of Kolmogorov’s universal similarity 
hypotheses, which assimilate a great variety of turbulent flows into a single 
unified theoretical structure. Kolmogorov’s second hypothesis predicts a specific 
form for the universal velocity spectrum called the ‘inertial subrange ’, valid 
for wavenumbers k between the large-scale (k,) energy-containing wavenumber 
region and the small-scale (kD) viscous dissipation region. If such a wavenumber 
regime exists, its spectrum will depend only on k and the flux of energy from the 
larger to smaller scales a t  the average dissipation rate c. The ‘inertial subrange ’ 
for the one-dimensional energy spectrum follows by dimensional analysis : 

Q1(kl) = cc,dkk,+ for k, < k, -g kD, (1) 

where 
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When the spectrum is normalized with the Kolmogorov length scale 7 = (v3/e)i 

and time scale t = (v/e)*, 
@,(k,7) = a I ( k , ~ ) - %  (3) 

Equation (3) is a special case of the universal form which follows from 
Kolmogorov’s first universal similarity hypothesis. Kolmogorov (1 962) has re- 
fined his earlier hypotheses to include the influence of the spatial variability 
of e (see Gibson, Stegen & Williams 1970; Gibson, Stegen & McConnell 1970). 
However, the effect appears to be negligibly small, so many authors (for example, 
Pond et al. 1971) continue to use (1) for the analysis and interpretation of ex- 
perimental measurements. Consequently, it is important t o  know the value of 
the universal constant a1 which characterizes the inertial subrange of the 
velocity spectrum. 

To obtain a reliable value for the Kolmogorov inertial subrange constant a1 
both the velocity spectra and the average dissipation rate e must be accurately 
determined. Traditionally, the greatest uncertainty in determining a1 has been 
due t o  the difficulty of measuring e. In  this study, several techniques have been 
used to determine e,  including the decay of turbulent energy, correlation with 
other grid-generated turbulent flows (Friehe & Schwarz 1970), and integration 
of velocity-derivative spectra which have been corrected for effects of finite wire 
length. 

Implicit in (1) is the assumption that the turbulent Reynolds number is 
large enough for the energy scale Lo = l/k, to be much larger than y. The 
turbulent Reynolds number R, is defined by 

R, = (U2)*h/v, (4) 

h = [15vu2/e]k (5) 

where the Taylor microscale h is given by 

Corrsin (1958) and Bradshaw (1967) suggested that a value for R, of 200-300 
is required for the existence of an inertial subrange. R, for grid-generated 
turbulence is usually less than 130, while for laboratory jets or wakes R, may 
be as large as 1000. I n  contrast, geophysical flows (atmospheric boundary layers, 
tidal channels, etc.) have values of R, a t  least an order of magnitude larger. For 
this reason, values of a, in the range 0.4-0.5 estimated from oceanic and atmos- 
pheric measurements were widely accepted (Pond et al. 1966). 

Recent measurements by Gibson, Stegen & Williams (1970) yielded values 
of a, in the range 0.6-0.7 under conditions similar to those of Pond et al. (1966). 
The only laboratory study of high Reynolds number turbulence available for 
comparison was that of Kistler & Vrebalovich (1  966), which gave even larger 
values of a, = 0.7-0.9. Consequently, i t  seemed appropriate to try and resoIve 
the apparent discrepancy between these results by repeating the Kistler & 
Vrebalovich experiment on high Reynolds number grid turbulence. This was 
carried out by one of us (GRS) using the large wind tunnel at  Colorado State 
University. The grid Reynolds numbers RIM (= UM/v ,  where M is the mesh 
size) were in the range 2-0-4.0 x lo5, which overlaps the lower range of Reynolds 
numbers used by Kistler & Vrebalovich. 
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In  addition to the determination of al, an important result of the study was 
the development of an empirical correction for effects of finite hot-wire length. 
During the course of the analysis it was concluded that correction for effects of 
finite wire length was crucial to the proper evaluation of the data. Currently 
available estimates for wire-length corrections (Wyngaard 1968) were found to 
be inadequate. These estimates were based on theoretical rather than experi- 
mentally determined high wavenumber spectra shapes, and are quite sensitive 
to  the analytical representation of the spectra a t  high wavenumbers. 

2. Experimental arrangement 
The measurements were made at Colorado State University in a closed-circuit 

wind tunnel with a very large test section (1.8 x 1-8 x 24-3 m). Designed as a low 
turbulence wind tunnel, this facility is normally used for studies of the atmo- 
spheric boundary layer and mesoscale meteorological simulations (Cermak 197 1) .  

To adapt this wind tunnel for the study of grid-generated turbulence a number 
of physical changes were carried out. The artificial surface roughness at the 
entrance of the wind tunnel was removed and the entrance faired to provide a 
slow smooth contraction. The instrument carriage normally used was moved to 
the farthest possible downstream position, where it would not influence the 
measurements. The carriage tracks which run along the inside of the tunnel 
were covered with temporary vertical walls. 

A biplane grid with a square mesh ( M  = 22.9cm) and square (3.81 cm) rods 
was installed one tunnel diameter downstream from the tunnel entrance. The 
grid solidity was 0.30, slightly less than the value of 0-34 typical of earlier grid 
experiments. With the grid installed, the wind tunnel had a maximum speed 
of 32m/s. The heating of the flow by the blower mechanism made it necessary 
to provide continuous cooling of the air stream. With cooling, a nominal steady 
air temperature of 1 "C could be maintained. This low temperature produced 
a slight decrease in kinematic viscosity resulting in a modest increase in grid 
Reynolds number. When the tunnel was operating at maximum speed and 
cooling, a grid Reynolds number RM greater than 400000 could be obtained. 
The mean velocity U and velocity fluctuations u and v in the longitudinal and 
transverse directions were measured a t  downstream locations X I M  = 35, 38, 40 
and 41, where X is the distance from the grid. The measurements were made a t  
nominal speeds of 13.2,24.0 and 28.8 m/s andgrid Reynolds numbers of 1-89 x lo5, 
3.35 x lo5 and 4.02 x lo5. 

A Pitot tube and a hot-wire sensor were positioned in the centre of the tunnel 
on a vertical stand bolted to the wind-tunnel floor. This arrangement was chosen 
to minimize wind-tunnel blockage. However, to make measurements a t  different 
values of X I M ,  it was necessary to shut down the wind tunnel before moving 
the probe stand. Special care was taken to ensure that the test conditions could 
be repeated after moving the probes to a new location. A second Pitot probe was 
fixed at the far downstream end of the tunnel. Using this probe as a reference, it 
was possible to repeat the speeds a t  different XIM's  to within & 22 cmls. The 
air stream temperatures were repeatable to within I "C. During a given run, 
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the air stream temperature was held constant to within If: 0-5 "C. All measure- 
ments were made at night to minimize the influence of atmospheric variables on 
the tunnel operation. 

The u and v velocity fluctuations were measured with a standard X-wire 
array (Thermo-Systems, Inc., Model 1241-T1.5). The sensors were operated in 
the constant-resistance mode using a DISA Model 55D01 constant-temperature 
anemometer system. Owing to the large size of the tunnel, 25 m probe cables were 
required between the anemometer system and the sensors. This required the use 
of additional impedance in the anemometer bridge to  ensure stable operation of 
the anemometer. Anemometer output signals were linearized and their sensitivities 
matched with DISA Model 55D10 linearizers. The velocity measuring system 
had a frequency response of - 3 db a t  30 kHz. 

Voltagesignalsproportional to u and v wereobtaineddirectlyusing anelectronic 
sum-and-difference circuit. The X-wire and associated electronics were calibrated 
in a laminar jet calibrator. For probe yaw angles up to _+ 10" the output followed 
a simple cosine response with equal sensitivities for u and v. At each X / M  the 
anemometer system was calibrated in situ using the adjacent mounted Pitot 
probe. 

Time derivatives aulat and &/at of the velocity fluctuations were generated 
from the u and v signals with electronic differentiators. Voltage signals corre- 
sponding to the velocity fluctuations and their derivatives were recorded on 
an AMPEX FR1.300, FM tape recorder. The complete velocity measuring system 
and signal conditioning equipment are shown in figure 1. 

- au Differentiator 
at  

3. Data analysis 
The primary intent of this paper is to  examine universal similarity in grid- 

generated turbulence a t  high Reynolds numbers. The analysis presented here 
is concerned with measurements taken a t  the highest mean speed obtained a t  
the farthest downstream location ( U  = 28-9 m/s, X / M  = 41). The grid Reynolds 
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U = 28.9 m/s 
X / M  = 41 
u’ = 0.650m/s 
(aupz)’ = 74.9 5-1 

u = 1.62 x 10-6 m2/s 
RM = 4.08 x lo6 
u’ = 0.632 m/s 
(avpz)’ = 97.4 s-1 

TABLE 1. Summary of test conditions. A prime denotes a root-mean-square value. 

number for these measurements was RM = 408000. A summary of r.m.9. values 
of the measured quantities is given in table 1. The time derivatives &/at and 
avlat were converted to space derivatives using the instantaneous space-time 
transformation a/at = + U a/ax. This assumption is justified for steady low in- 
tensity turbulent flows such as grid-generated turbulence (Lumley 1965). 
Although the ratio u‘/v’ = 1.03 is close to the isotropic value of 1.00, it should 
be noted that the ratio ((au/at)’/(av/at)‘}2 = 0.59 is significantly larger than the 
value of 0.50 expected for locally isotropic turbulence. It will be shown below 
that this apparent departure from local isotropy is attributable to effects of 
finite wire length. 

3.1. Dissipation calculation 

The average value of the local dissipation is given by 

E = 2veiieij, (6) 

where eij = &( aui/axj + auj/axi) , (7) 

in which summation of repeated indices is stipulated. 
Far downstream of the grid, the turbulence is relatively homogeneous in the 

transverse directions and approximately isotropic. Assuming isotropy, (6 )  can 
be written in several forms, including 

e = i~iv(au/ax,)2 (8) 

and E = ~ { 3 ( a ~ / a ~ , ) ~  + 6 ( a v / a ~ J ~ } .  (9) 

The first expression only requires the measurement of the longitudinal velocity 
fluctuations. The second expression includes the measurement of the transverse 
velocity fluctuations, and may be used to compensate for slight anisotropy of 
the turbulence field. Both expressions for E will be used in this study. 

3.1.1. Decay of turbulent energy. The dissipation rate E can be determined 
directly from a measurement of the decay of turbulent energy. The rate of 
turbulent energy decay in an unsheared homogeneous turbulent flow is given by 

d F / d t  = - E ,  (10) - - -  
in which 2 = u2 + v2 + w2, u, v and w being the fluctuating components of the 
longitudinal and transverse velocities. Assuming transverse isotropy in a grid 
flow, and using Taylor’s hypothesis, we can express the dissipation rate as 

- -  
E = - &Ud(u2 + 2v2)/dxI. (11) 

The values of 3 and 3 were within 4 % of each other under all test conditions. 
We have, therefore, chosen to fit a decay law to p rather than individually to 2 



566 J .  Xchedvin, Q. R. Steqen and C. H .  Gibson 

a\xo/~~ 0 2 4 

- 1.00 1.92 2.01 2.11 
- 1.25 2.35 2.46 2.58 

TABLE 2. Variation of estimate of dissipation E (m2/s3) from (13) 
with several choices of X,/M and n. 

and vy as has been done by previous investigators. A least-squares fit of the 
data was made to the expression 

- 
q2 = + A ( X / M - X o / M ) " ,  (12) 

where X,/M is the virtual origin a t  which the turbuleiice intensity is infinite. 
Using (1 1)  and (12), the dissipation rate can be expressed as 

( X / M  - X,/M)*-'. (13) 
nA U 
2M 

E = -- 

The best value of the exponent to use in the decay equation is somewhat 
uncertain. In  early studies n = - 1 was used; however, Comte-Bellot & Corrsin 
(1966) have suggested n z - 1.25. All the data were fitted t o  (12) using values of n 
between 0.90 and 1-40 and values of X,/M between 0 and 10.0. The best fit was 
obtained with n = - 1.0, X,/M = 0 and with A = 5.12 x lo5 cm2/s3. These values 
yield e = 1.92 x lo4 cm2/s3 at X / M  = 41. However, because of the small range of 
X / M  and corresponding small changes in q2, a range of parameters gave equally 
satisfactory fits to the data. Table 2 gives the estimates of E for n = - 1.0 and 
- 1.25 and X,/M = 0,  2 and 4, all of which gave good fits to the data. All the 
estimates are in the range E = 2.2 & 0.3 x lo4 cm2/s3. 

A least-squares fit was also made to measured dissipation rates calculated 
from (9), using an equation of the same form as (13): 

E = B ( X / M  - X,/M)"-l. (14) 

The best fit was again obtained with n = - 1 and X,/M = 0, and with 
B = 2.19 x lo7 cm2/s3. The value of E at X / M  = 41 from (14) is 1.30 x 104cm2/s3. 
This value of E is 40% less than the value predicted using the energy-decay 
technique. This low value prompted the subsequent investigation of wire-length 
corrections ( §  3.1.3). 

3.1.2. Correlation of grid-generuted turbulence experiments. Friehe & Schwarz 
(1970) have suggested a method for correlating the results of different experiments 
on grid-generated turbulence. They demonstrated that the dimensionless variable 

- -  
E' = eM/(u2+ 2v2) u (15) 

could be used to correlate measurements made using both round and square rod 
grids. For X / M  = 41 the value of E' obtained from Friehe & Schwarz's plot yields 
a dissipation rate for the present experiment of E = 2.4 f 0.3 x lo4 cm21.33, in 
reasonable agremeent with the value obtained from the decay law. 
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3.1.3. Wire-length corrections. I n  3 3.1.1 we found that the dissipation rate 
estimated from the velocity derivatives was significantly lower than the estimate 
obtained using the velocity fluctuations. Since the integral of the derivative 
spectrum is very sensitive to the spectral shape a t  high wavenumbers, attenua- 
tion of the spectrum by effects of finite wire length was suspected. Wyngaard 
(1 968) has proposed a theoretical expression for correcting velocity spectra for 
the averaging due to finite wire length lw. Using the universal spectrum function 
proposed by Pao (1965) he derived an expression relating the ratio of the true 
to the measured one-dimensional velocity spectra obtained with a X-wire. This 
relation depends on the ratios T[Zw and d/lw, where d is the perpendicular separa- 
tion of the wires and 7 is the Kolmogorov length scale. Using the value of the 
dissipation estimated from the decay law, the length scale for the present data 
is 7 = 0.020 em, which gives r/lw = 0.16. The corrections for our particular case 
q/lw = 0.16 and dll, = 0.4 were not computed by Wyngaard. In  order to make 
a comparison we choose available corrections for 711, = 0.1 and d/lw = 0.5 for 
the longitudinal spectrum andyll, = 0 anddll, = 0.5 for the transverse spectrum. 
The corrections corresponding to these values should be slightly larger than 
those needed for our data as they represent longer wires with greaterwire 
separation. 

The wire-length corrections were applied to the velocity and velocity- 
derivative spectra, which can be integrated to give the mean-square velocity 
and velocity derivatives as follows: 

The average dissipation is calculated from the integrals of the velocity-derivative 
spectra through substitution into (8) and (9) : 

or 

E = 1 5 ~  Yl (k , )dk l  j O m  
r m  r m  

E = 3~ J Y l ( k l )  dk ,  + 6~ J Y2(kl) dk,. 
0 0 

Evaluation of (20) using the measured spectrum gives E = 1.36 x 104cm2/s3 
while (21) yields E = 1.20 x lo4 cm2/s3. After applying Wyngaard's spectral correc- 
tion to 'Tl(kl) and Y2(k1) the corrected dissipation values obtained were 
E = 1 . 6 4 ~  104cm2/s3 from (20)  and E = 1.4 x 104cm2/s3 from (21). These vaIues 
are still considerably smaller than those obtained from the decay law and the 
Friehe & Schwarz correlation. This difference prompted us to try a different 
wire-length correction procedure. This correction was made by comparing our 
normalized but uncorrected spectra with other normalized spectra of universal 
form. The Kolmogorov scales used to normalize our measured spectra were 
computed using the dissipation rate obtained from integrating the respective 
derivative spectra as in (20) and (21). 
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FIGURE 2. Normalized (a)  du/dt and ( b )  dw/dt spectra and reference wake spectra. 0, grid 
data points; + , reference cylinder wake data points (Champagne & Wygnanski); -, 
polynomial fits. 

The reference spectra used for this comparison were from unpublished measure- 
ments made by F. H. Champagne & I. J. Wygnanski in a cylinder wake at  a 
downstream distance of 299 cylinder diameters. These spectra were felt to  
require only small wire-length corrections since the wires were very short with 
respect to  7, having a ratio yll, = 0.75. 

The u wake spectrum was used to  correct our longitudinal spectrum and the 
w, wake spectrum (wT being in the direction parallel to  the cylinder axis) to 
correct our transverse spectrum. The reference and measured spectra normalized 
with their respective Kolmogorov length and time scales are compared in figures 
2(a)  and (b) .  

Champagne (1973) has compared the reference spectra with the spectra from 
;t variety of low intensity turbulent flows. Good agreement as to shape and 
magnitude of the second and fourth moments of the velocity spectra suggests 
that the reference spectra used were indeed reasonably universal in form. The 
reference wake spectra were obtained a t  a turbulence Reynolds number R, = 258, 
which is near the value for the present data of R, = 280 (based on the dissipation 
rate calculated from the decay law). 

Empirical wire-length corrections were made for both the du/dx and dvldx 
spectra. For this purpose least-squares polynomial fits were computed for the 
normalized cylinder wake reference spectra. Polynomial fits were also made to  
our uncorrected unnormalized derivative spectra Yl and Y2, which were then 
normalized and compared with the second moments of the reference spectra. 
Through an iterative comparison procedure, wire-length corrections were made 
to  the Y,  and Y2 spectra, in the region of normalized wavenumbers from about 
0.05 to  0.7. 
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FIGURE 3. Empirical wire-length correction for .u spectrum using iteration method. + , 
points on polynomial fit to reference spectrum; -, polynomial fit to uncorrected grid 
data; - - -, grid data corrected to reference spectrum; , grid data renormalized 
with new dissipation value; ps$$j, increase in area under derivative spectrum. 

It was felt that  the universality of spectral shape between the present data and 
the reference spectra should be most valid at wavenumbers above the low end 
of the inertial subrange. The present data indicate that the inertial subrange 
extends t o  a normalized wavenumber of a t  least 0.05, which was taken as the 
lower limit for our correction. Also, Wyngaard's correction used above indicated 
the spectral error for the measured spectra to be less than 2 yo below a normalized 
wavenumber of 0.07. Therefore, the corrections will not be sensitive to  the 
specific value of the cut-off wavenumber chosen for the iteration procedure. The 
upper limit for corrections was taken to be a normalized wavenumber of 0.7, 
corresponding to the 15kHz low-pass filter used when the data were recorded. 

The iteration procedure used to obtain an empirical correction is shown in 
figure 3 for the Y, spectrum. The polynomial fits made to the measured spectra 
were normalized using the uncorrected dissipation obtained from the integral of 
the respective derivative spectrum. Beginning a t  the large wavenumber limit 
of 0.7 the derivative spectral points were corrected upwards to the value of the 
reference spectrum a t  the same wavenumber. This was continued towards smaller 
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wavenumbers until the cross-over point of the derivative and reference spectra 
was reached, a t  which point the correction factor is 1.0. From the cross-over 
point towards high wavenumbers, the corrected measured spectrum was thus 
taken equal to the reference spectrum, and below the cross-over point themeasured 
spectrum remained unchanged. These corrections were made solely for the 
purpose of recalculating e. 

This procedure increased the area under the derivative spectrum as shown by 
the shaded area in figure 3. From this increase in area a new, larger dissipation 
was calculated such that when the corrected derivative spectrum was re- 
normalized its area would again be equal to that under the reference spectrum. 
The corrected dissipation e, is obtained from the e used for the previous 
normalization using 

where Yr,, is the Yl spectrum corrected to the reference spectrum YIE. The 
integrations were performed over the normalized wavenumber region from 
0*001 to  0.7. 
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When a corrected dissipation value ec had been obtained, it was used to re- 
normalize the uncorrected derivative spectrum Y,. The correction to the reference 
spectrum was then repeated. The larger, corrected dissipation ec causes the Y, 
spectrum to be shifted down slightly and towards smaller wavenumbers from its 
previous position. The process of renormalization, spectral correction and 
calculation of a new dissipation was continued until the area under the corrected 
spectrum converged to within 2 %  of the area under the reference spectrum. 
Convergence of the corrected Y, spectrum towards the reference spectrum is 
shown in figure 4 for the first, fifth and twentieth iterations. The results of the 
final iteration give the corrected dissipation and spectrum. It can be seen that 
by the last iteration the agreement between the shapes of the reference and 
measured spectra is fairly good in the region of normalized wavenumbers 
0-006 < k , ~  < 0.05, where no spectral corrections were made. The ratio of the 
corrected to  uncorrected spectral values gives the empirical wire-length correc- 
tion vs. wavenumber. The present empirical wire-length corrections are com- 
pared with the previously used Wyngaard corrections in figures 5 ( a )  and (b ) .  
The empirical corrections are significantly larger a t  high wavenumber than 
Wyngaard's. The sudden approach to 1.0 of the empirical corrections at small 
wavenumbers is an artifact of the small wavenumber limit of the empirical 
correction procedure. 

Dissipation values were calculated from the empirically corrected Y1 and Yz 
spectra. Use of Yl in (20) yielded e = 2.0 x 104cm2/s3 while use of Y, and 'Yz 
in (21) gave E = 2.4 x IO4cm2/s3. These corrected values of the dissipation rate 
agree well with the earlier estimates obtained from the decay of turbulent energy 
and the correlation with other grid-generated flows. This lends further support 
to the estimates of the dissipation values and also to  the empirical wire-length 
correction. The value of B = 2.2 k 0-3 x 104cm2/s3 obtained from the turbulent 
energy decay has been used in all following spectral normalizations. This value 
involves the least assumptions and encompasses the values obtained by the 
other techniques. 

3.2. Inertial subrange constant 

The existence of an inertial subrange has been demonstrated in a variety of 
laboratory and naturally occurring flows. However, a t  present there is no general 
agreement on the value of the inertial subrange constant a. For example, in 
atmospheric flows the value for the one-dimensional constant a, has slowly in- 
creased from 0.46 (Pond, Stewart & Burling 1963) to 0.55 (Paquin & Pond 1971) 
to 0.60 (McBean, Stewart & Miyake 1971). For the present data we have obtained 
a value of al = 0.48 k 0-06 for R, 2: 280. This was obtained from our longitudinal 
spectrum corrected according to the empirical wire-length correction and 
normalized with the decay law dissipation rate. 

The customary method of displaying energy spectra to show an inertial sub- 
range is to plot the spectra us. normalized wavenumber in log-log co-ordinates 
as shown in figure 6. Our longitudinal velocity spectrum might be interpreted 
as showing a short region perhaps a decade in length which conforms to the 
- $ inertial subrange power law. However, such plots are often deceptive as to 
the actual agreement with the power law and the apparent extent of the inertial 
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FIGURE 5. Comparison of the empirical and Wyngaard wire-length corrections for (a) the 
longitudinal and ( b )  the transverse spectrum. Ratio of measured to actual spectral values: 
0, Wyngaard's theoretical ratio; + , empirically determined ratio. 
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FIGURE 6. Longitudinal spectrum. -, - inertial subrange spectral slope. Indicated a1 
value is z 0.48 from intercept at  b , ~  = 1. 

subrange. A more stringent test is to plot the spectrum multiplied by the wave- 
number raised to the inverse of the expected power law vs. the logarithm of the 
wavenumber. For the case of the inertial subrange we have plotted 

(hr )+  x @1(hr) log ( h r )  
in figure 7. From (3) we see that this corresponds t o  plotting a,(k,r) us. log (k,?). 
On such a plot, the inertial subrange will appear as a region of constant a,, 
the value of a, being the value appropriate to  the inertial subrange. Figure 7 
shows that the inertial subrange which seemed to be indicated in figure 6 is 
considerably less than a full decade in length, and in fact a true constant region 
may not exist. Both plots indicate a value of a, N 0.48. 

Of the numerous experiments with grid-generated turbulence, only the 
measurements of Kistler & Vrebalovich (1966) had a large enough Reynolds 
number (R, = 265-670) to allow a determination of a,. Values of a, computed? 
from their longitudinal spectra lie in the range 0.7 < a, < 0.9. This range is 

t The a, values quoted in this paper were calculated from the original data, which 
were kindly provided by Prof. Kistler. 
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FIGURE 7. Semi-log inertial subrange plot of u spectrum times (k,~$. 

Inertial subrange appears as flat spectral region. a, w 0.48. 

considerably higher than the present value of 0.48. I n  fact, at a comparable 
Reynolds number (R, = 265) their data indicate a value a, z 0.9. This disparity 
between the present data and those of Kistler & Vrebalovich under similar test 
conditions contradicts Kolmogorov’s prediction of universal similarity in the 
inertial subrange. The reason for this disagreement is not known. Three of their 
runs have q/lw < 0.3, and therefore require considerable wire-length correction. 
However, this is not a factor in the normalization of their spectra since they used 
the measured decay of turbulent energy to determine the dissipation. Therefore, 
their large a, values are most probably due to anomalies in their measured spectra. 

In  figure 8 the present spectral data are compared in a semi-log inertial 
subrange plot with two of Kistler & Vrebalovich’s spectra and also with low 
Reynolds number grid data previously reported by Comte-Bellot & Corrsin (1971) 
and Stewart & Townsend (1951). I n  the higher wavenumber region the present 
data show good agreement with the shape of the lower Reynolds number spectra. 
The spectra of Kistler & Vrebalovich are not in as good agreement a t  high wave- 
numbers. This may be due to effects of finite wire length for the R, = 670 
(RM = 2.4 x lo6) data for which r/lw = 0.13; however, wire length should not 
have affected their data a t  R, = 265 (R, = 6.7 x lo5) for which rfl, = 0.95. 

A gradual increase in normalized spectral values a t  low wavenumbers with 
increasing Reynolds number is indicated. This is due to the increasing separation 
between the energy and dissipation scales of the flow, and an approach towards 
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an inertial subrange between these scales. However, the Kistler & Vrebalovich 
spectra are inconsistent with this trend, showing a much sharper rise in values. 
Their two normalized spectra are almost identical in spite of having turbulent 
Reynolds numbers in the ratio 3 : 1. 

3.3. Isotropy 

The close approximation of grid-generated turbulence to an isotropic field has 
motivated a number of studies of this flow. The ratio u'lv' of longitudinal to 
transverse velocity fluctuations is a simple criterion often used to describe the 
isotropy of grid-generated turbulence. I n  the present case, u'Iv' = 1.03 com- 
pared with 1.07 measured by Comte-Bellot & Corrsin (1966) behind a square- 
rod grid a t  R, = 1-35 x lo5. The lower value in the present case may reflect 
a small trend towards isotropy with increasing Reynolds number. I n  any case, 
the measured ratio is neither a very satisfactory nor illuminating way of de- 
scribing the actual degee of isotropy exhibited by the flow. The values of u' 
and v' are integrals of the spectra, and are most sensitive to the large-scale 
turbulent motions. While it is necessary that u' = v' for the flow to be entirely 
isotropic, inequality most likely represents anisotropy in the very large scales. 
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FIGURE 9. Isotropic comparison for present grid data. a, measured u spectrum points; 
-, polynomial fit to u spectrum; 0, measured v spectrum points; - - - , isotropic v 
spectrum predicted from u polynomial fit. 

Measurements yielding u' + v' have little relevance to the question of isotropy 
of small-scale motions in the flow. This is an important point, since the theories 
of universal similarity depend on the isotropy of the small-scale turbulent motions. 

As a test of local isotropy a t  small scales, we have chosen to compare the 
longitudinal and transverse spectra according to the isotropic relationship: 

@ Z ( W  = H@,(hr) - ( h r )  ~@1(~1r)/~(Q?)l. (23) 

For these comparisons the normalized spectra including wire-length corrections 
were used. A polynomial fit was made t o  the measured longitudinal (Q1) spectral 
data points, as shown in figure 9. The maximum deviation of the polynomial fit 
from the <D, spectrum was less than 2 yo. Using (23)) an isotropically predicted 
transverse (0;) spectrum was computed from the polynomial fit to @,. The 
measured transverse spectrum is compared with the predicted isotropic transverse 
spectrum in figure 9. The first moments of the velocity spectra are plotted versus 
normalized wavenumber in semi-log co-ordinates in order to show the comparison 
more clearly. The measured and isotropically predicted transverse spectra are 
in excellent agreement up to a normalized wavenumber of 0.1, with an average 
deviation of less than 5 %. In  this region the empirical wire-length corrections 
are less than 15y0 of the measured value. Only a t  the largest scales (smallest 
wavenumber) does the deviation from the isotropic relation reach 10 yo. Figure10 
presents similar results for the data of Kistler & Vrebalovich (1966) a t  their 
highest Reynolds number (R, = 2 . 4 ~  lo6)), where u'/v' = 1.23. The data only 
appear isotropic a t  the very high wavenumbers. This plot clearly shows that 
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FIGURE 10. Isotropic comparison for data of Kistler & VrebaIovich for R, = 2 4 3 x  lo4 
and R, = 670. A, measured u spectrum points; ~ , polynomial fit to u spectrum; 
0, measured w spectrum points; - - -, isotropic w spectrum predicted from u polynomial fit. 

the anisotropy indicated by u'Id is due to the large energy-containing scales. 
The deviation from isotropy begins below klq = 0-02, which from figure 8 is in 
the centre of their inertial subrange. 

As a final check on isotropy we can examine the derivative measurements. In  
contrast to the u' and v' measurements, the values of the mean-square velocity 
derivatives are very sensitive to the small-scale turbulent fluctuations. Un- 
fortunately, this is the region where effects of finite wire length become most 
important. For isotropic turbulence one should find ( i?~/ i?x , )~  = 0.5(i3v/&~,)~. The 
actual ratio of the measured values in table 1 is 0.59 rather than 0.5. Inasmuch 
as we have previously demonstrated isotropy at larger scales, it  seems highly 
unlikely that the discrepancy can be interpreted as anisotropy of the small scales. 
The difference is probably due to differences in the wire-length attenuation of 
the longitudinal and transverse spectra. Wyngaard's theoretical wire-length 
correction as well as the empirical correction indicate a larger attenuation for 
t'he transverse spectrum than for the longitudinal spectrum. By integrating the 
empirically corrected dissipation spectra Yl and Y2 the relation is found t o  be 
(i3u/i?~,)~ = 0 . 4 2 ( ~ ~ / & , ) ~ .  The ratio is considerably changed, though still not equal 
to 0.5. However, the value lies within the uncertainty of the empirical wire- 
length corrections. 

37 F L M  65 
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4. Summary 
High Reynolds number measurements were made in a grid-generated 

turbulent flow in order to determine the inertial subrange constant a, at a 
Reynolds number between the low values usually obtained in laboratory flows 
and the large values obtained in geophysical flows. When this experiment was 
begun, reported values of a, in geophysical flows ranged from 0.4-0-7, while 
the only available high Reynolds number laboratory study yielded an a, value 
of 0.7-0-9. Subsequently, a number of determinations of u, in geophysical flows 
have been reported. Nasmyth (1970) re-examined the data of Grant, Stewart & 
Moilliet (1962)) and made corrections leading to a value of 0.56. Paquin & Pond 
(1971) obtained a value of a, = 0.55, while McBean et ul. (1971) suggested a value 
of 0.60 as most appropriate. 

The value of a, obtained in our present experiment was 0.48 & 0.06. This value 
seems to be in agreement with recent determinations. Our results indicate that 
u1 values for large Reynolds number laboratory grid turbulence are not sig- 
nificantly different or larger than those obtained in high Reynolds number 
atmospheric or oceanic turbulent flows. 

For the measurements reported in this paper the spectra exhibit good agree- 
ment with isotropic predictions over the range of wavenumbers that can be 
reasonably assumed to be only slightly affected by wire-length averaging. This 
result is in contrast to that of Kistler & Vrebalovich, whose data show considerable 
anisotropy in the energy-containing scales. Our closer approach to isotropy, 
moreover, seems to be more in agreement with the general trend toward greater 
isotropy with increasing Reynolds number that is seen in the data of Comte- 
Bellot & Corrsin (1966). 

In  order to reconcile our direct dissipation measurements with decay law 
values a new wire-length correction procedure was devised. Comparison &as 
made with a reference spectrum assuming universal similarity. The results of 
our empirical wire-length correction indicate that Wyngaard’s (1968) theoretical 
correction, based on Pao’s (1965) spectrum, is not adequate for our particular 
wire length and separation. The actual corrections for the spectra are seriously 
underestimated by the theoretical corrections. It is suggested that a systematic 
experiment should be performed to determine the range of reliability of the 
theoretical wire-length correction. 
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